- Title
- Doppler clutter in HF radar systems produced by ULF waves
- Creator
- Sedeh, Leila Norouzi
- Relation
- University of Newcastle Research Higher Degree Thesis
- Resource Type
- thesis
- Date
- 2014
- Description
- Research Doctorate - Doctor of Philosophy (PhD)
- Description
- Ultra low frequency (ULF) waves are generated by the interaction of the solar wind with Earth’s magnetosphere. The waves propagate through the ionosphere and may be seen in data from SuperDARN Over-The-Horizon radars as oscillations in Doppler velocity which coincide with oscillations of the geomagnetic field recorded by ground magnetometers. Data from the two Tasman International Geospace Environment Radars (TIGER) and the magnetometer located on Macquarie Island over 2006-2009 show that ULF wave signatures are common. The dependence with time of day showed most ULF radar events occurred between 6-12 UT (dusk and pre-mid-night sector). Using the Maximum Entropy Method (MEM) several spectral aspects of detected ULF waves were investigated for the first time. Most of the recorded frequencies were in the range 1- 4 mHz. Some frequencies were seen more often than others with the more common frequencies spaced about 0.3mHz apart, consistent with previous studies. There was no evidence of a frequency dependence on latitude. Field line resonance (FLR) signatures in the radar data were expected but were not common, as shown by comparisons with coincident ground magnetometer data. This study has shown that most radar echoes containing ULF wave Doppler signatures appear to be backscattered from the plasmapause region mapped into the ionosphere. Modelling of the Doppler velocity combined with a ULF wave model and two dimensional ray tracing was achieved for the first time. The results are consistent with experimental observations. With further improvement, this modelling should provide a valuable tool to understand shear Alfven mode and fast mode plasma wave interactions within the ionosphere and their effects on HF propagation through the ionosphere.
- Subject
- ULF waves; HF signals; Seahr Alfven wave; wave propagation; FLR; plasmapause; ionosphere; superDARN; radar; Doppler clutter; Doppler velocity
- Identifier
- http://hdl.handle.net/1959.13/1042283
- Identifier
- uon:14033
- Rights
- Copyright 2014 Leila Norouzi Sedeh
- Language
- eng
- Full Text
- Hits: 2375
- Visitors: 2737
- Downloads: 343
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | ATTACHMENT01 | Abstract | 209 KB | Adobe Acrobat PDF | View Details Download | ||
View Details Download | ATTACHMENT02 | Thesis | 8 MB | Adobe Acrobat PDF | View Details Download |